
Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
Two-Dimensional Packing For Irregular Shaped Objects

1Ping Chen, 1Zhaohui Fu, 2Andrew Lim and 3 Brian Rodrigues

1Department of Computer Science
National University of Singapore

3 Science Drive 2, Singapore 117543
fchenp,fuzhg@comp.nus.edu.sg

2Department of IEEM
Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
iealim@ust.hk

3School of Business
Singapore Management University

469 Bukit Timah Road, Singapore 259756
br@smu.edu.sg
Abstract

Packing problems arise in a wide variety of application
areas. The basic problem is that of determining an effi-
cient arrangement of different objects in a region without
any overlap. The simplest packing problem is rectangular
packing, where both the objects and the region are rectan-
gular. Many research works have been done on two and
three dimensional rectangular packing. However there are
many situations when either objects or the containing re-
gion is irregular in shape. In the project, we concentrate
on two-dimensional packing problems involving irregular
shaped objects (both convex and concave). We have applied
several approaches to solve such problems.

1 Introduction

Packing problems arise from a variety of situations in-
cluding pallet loading, textile cutting, container stuffing and
placement problems. Such problems are optimization prob-
lems that are concerned with finding a good arrangement
of multiple objects (2-D or 3-D) in a larger containing re-
gion without overlap. The usual objective of the allocation
process is to maximize the material utilization and hence to
minimize the wasted area.
 0-7695-1874-5
The packing problem becomes much simpler when both
objects and the containing region are rectangular in shape.
Many research works have been done on two and three
dimensional rectangular packing problems. However, in
many practical applications, objects and containing regions
may have irregular shapes. Due to the geometrical com-
plexity introduced by irregular shapes, such problems are
not as well studied as rectangular packing.

We can formally define the problem as follows:
Given a set of objects O with irregular shapes and an irreg-
ular container C, find the set of objects P � O that can be
arranged in C without any overlapping such that the valueP

area(Pi)

area(C) is maximized.
There are relatively few works on two dimensional pack-

ing with arbitrary shapes, compared to 2D rectangle pack-
ing. They can be classified into two types, namely nesting
and packing.

Nesting is an approach in which irregular objects are
nested in simpler regular shapes, and these simpler shapes
are then packed into an available area.

Rectangle is the most popular shape for nesting. Free-
man and Shapira [7] made the first attempt in enclosing ir-
regular shapes in a convex polygon and then finding the re-
quired rectangle by iteratively basing the rectangle on each
of the edges of the polygon. In practice solutions of this
type will only prove satisfactory if the pieces themselves
/03 $17.00 (C) 2003 IEEE 1

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
are close to rectangular so that the wasted area is small.
Adamowicz and Albano [1] proposed another approach by
nesting more than one piece together when pieces are far
from rectangular in shape. They placed a threshold on the
amount of waste they are willing to accept in any enclosure.
Another alternative using rectangle packing is to nest all
the pieces into identical polygons which can be used to tile
the plane. These include triangles, quadrilaterals, pentagons
and hexagons. Dori and Ben-Bassat [5] based their packing
algorithm using hexagons. They nested the required shapes
into a polygon which minimizes the wasted area and then
surround this with a hexagon which is suitable for tiling the
plane. However, their approach is limited to convex poly-
gons.

Straightforward single pass packing strategies involve
taking the pieces in order and placing them on the stock-
sheet according to a given placement policy. This may be
repeated several times for different orderings or different
placements and the best solution chosen, or a more intelli-
gent method may be used in a single pass. Qu and Sanders
[15] first sorted the pieces in decreasing length order and
then placed along two adjacent edges of the stock-sheet.
Dowsland and Dowsland [6] used a leftmost placement pol-
icy together with a random ordering of the pieces. Albano
and Sapuppo [2] were concerned with the more complex
problem in which the pieces may be placed in a number of
different orientations. There is another approach which has
become increasingly popular in recent years. It is to pro-
duce an initial layout and then to use small changes in order
to improve it. Such an approach may either continuously
seek for improvement, or may incorporate meta-heuristic
techniques such as simulated annealing or tabu search in or-
der to allow up-hill, or non-improving moves. Blazewicz
et al.[4] suggested a tabu search algorithm. Sakait and Hae
[16] applied genetic algorithms. They discretized the object
and represented the object as a linked list of cells. The link-
ing from one cell to the next is given in the form of an eight
connectedness. Thus this approach is applicable to any ar-
bitrarily shaped object. The total layout space is divided
into a finite number of cells for mapping it into a new 2D
genetic algorithm chromosome. The genetic operators of
mutation and crossover have been suitably modified to suit
this problem.

Keishi, Shigetoshi and Yogi [13] developed an algo-
rithm to handle convex-rectilinear blocks by enhancing the
BSG-based packing algorithm. BSG stands for Bounded-
Sliceline Grid. Maggie and Wayne [14] made use of the
SP (Sequence Pair) structure. Each rectilinear shaped block
is partitioned into a set of rectangular sub-blocks, each of
them individually handled in a sequence pair as a unit block.
The horizontal and vertical graphs are constructed. Packing
can be obtained by applying the longest path algorithm on
the graphs.
 0-7695-1874-5
Prior work in this area is largely specific to a particular
problem domain. For example, the object pieces from the
textile industry usually have similar shapes and sizes. Such
restrictions found in the problem domain naturally simplify
the problem. This provides the motivation for us to solve
a more general class of packing problems, where the ob-
jects and even the containers can be arbitrary shaped. Ob-
jects can be packed, whether they are convex or concave. In
this paper, different approaches are presented in details. We
first adopt a rectilinear representation for irregular shapes.
Because of the simplicity of this representation (like using
pixels to draw an object), we implemented several heuristic
methods, like Greedy, Genetic Algorithms(GA) and Tabu
Search (TS), to obtain a good packing arrangement. We
modified the GA approach first used by Sakait and Hae [16].
We also proposed a Tabu Search based method, which will
converge faster than GA. The results turns out to be bet-
ter than previous works by Sakait and Hae [16]. We have
also achieved satisfactory packing when objects have more
rectilinear-like shapes. However, if the objects are arbitrar-
ily irregular polygons, the packing can be very poor. This
motivated us to adopt a more powerful boundary represen-
tation. Such a method will represent the polygon by a vector
of its vertices. Such representation is seldom found in pre-
vious works. Its simple yet powerful approach empowers
us more freedom in manipulating the objects. Meanwhile,
it also brings us great difficulty in optimizing the layout.
Neither GA or TS can be applied to this system easily. In
this paper, we present a relatively simple greedy approach
that works surprisingly well under this representation.

2 Rectilinear Representation and Heuristics

We first adopted a rectilinear representation for objects
to be packed. The major reason is due to its simplicity -
like integer coordinates and easy checking for overlapping,
etc. After the rectilinearization, objects become more reg-
ular (though we will lose some information). Hence it be-
comes easy to perform advanced heuristic methods, like GA
and TS.

2.1 Object Representation

Our objective is to find a good arrangement of a set of ar-
bitrarily shaped objects such that the bounding rectangle of
this arrangement is minimized. The objects are represented
as a matrix (two-dimensional array), which is a discrete ap-
proximation of the actual object shape. This “rectilineariza-
tion” process is shown in Figure 1. Note that there will be a
digitization error if the object is not rectilinear.

Thus each object has four orientations: 0Æ, 90Æ, 180Æ and
270Æ. Rotation is done by simply modifying the matrix and
updating the height and width of the object.
/03 $17.00 (C) 2003 IEEE 2

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
 1

 1

 1

 1

 1

 1

 1 1 1 1 1 1

 1 1 1

 1 1 1

 1

 1

 1 1 1

 1 1

 1 1 1 1 1 1

 1 1 1 1

 1

 1 1

 1 1 1

 0 0 0 0

 0 0 0 0

 0 0 0

 0 0

 0 0

Object Representation Physical Layout

Figure 1. Rectilinear Representation

F

 0-7695-1874-5/03 $17.00
 1

 1

 1

 1

 1

 1

 1 1 1 1 1 1

 1 1 1

 1 1 1

 1

 1

 1 1 1

 1 1

 1 1 1 1 1 1

 1 1 1 1

 1

 1 1

 1 1 1

 0 0 0 0

 0 0 0 0

 0 0 0

 0 0

 0 0

igure 2. Counting number of edges
Figure 3. Combining of objects
There are three advantages for us to use this representa-
tion.

1. Any arbitrarily shaped object, including convex and
concave, etc, can be represented easily.

2. Rotation and checks for overlapping are easy.

3. Advanced heuristics (GA & TS) can be applied.

On the other hand, there are also two major disadvan-
tages.

1. Complexity of representation and computation grows
quadratically with the size of each object.

2. Only four orientations are possible.

2.2 Greedy Method

With rectilinear representation of objects, our heuristic
first starts with a greedy approach. For a given set of n
objects, the following steps are executed:

Array N[1...n] contains all objects;
for each element i in N
push N[i] into Q;

while(Q is not empty){
for each element e in Q

for each unpacked object o in N;
combine(e, o) and

record the best combination BC;
push BC into Q;

}

We use the goodness factor for an object (or a set of com-
bined objects) as a measurement for the quality of packing.
The goodness factor is dependent on two values. The first
value is the total number of edges, which is defined to be
the total number of turns when going along the contour of
an object, which is shown in Figure 2. The inner holes will
be ignored. The rationale is that the lesser the edge number
is, the better the packing is. The rectangle has four edges,
which is the smallest. The second is the measure of wasted
area, which can be obtained by counting the empty cells of
the minimum bound rectangle of such configuration. Since
our objective is to improve the utilization of the container,
higher weightage may be set for the number of wasted area.

The combined function will return the best combination
for two objects. The general idea is likened to the game of
Tetris. Firstly, the two objects are rotated. For each one of
the sixteen possible combinations, one object is fixed first
(we call itA), the other object (we call itB) is placed above
the first object. Then object B is tries to drop down until it
touches object A from all possible positions. The Figure 3
illustrates this process. The grey object is A and the black
is B. For each position leftward, object B will drop down
until A and such combination is evaluated.

2.2.1 Compaction

We realized that the packing configuration generated by
combining can be further improved via compaction. Our
compaction routine tries to move every object left-most and
down-most, starting with the right-upper-most object. This
is as if there are physical forces pushing the objects left and
 (C) 2003 IEEE 3

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
Figure 4. Compacting of objects
down. First we start with the right most object. When the
object encounters a obstacle, both the object and the obsta-
cle will be linked together as a group and move left together.
The size of the group grows as we proceed. The same pro-
cedure will be applied for moving objects from top to bot-
tom. Figure 4 shows how the compaction method helps to
improve the result.

2.2.2 Experimental Result

The experiments are conducted on sets of objects. Figure
5 demonstrates an example of the packing of T shaped ob-
jects. This configuration is in fact a little better than the
result obtained by Sakait and Hae [16] using Genetic Algo-
rithms. Note there are four empty spaces in the figure, three
of which are together. In Sakait and Hae’s work, the four
empty spaces are separated.

Figure 5. Packing of T Shapes

Table 1 compares the results of packing different objects.
It turns out that the greedy approach is able to generate a
good result in a short time if the objects are simple, like
T-shapes or rectangles.
 0-7695-1874-5/
Test Description LB Result Util% Time
1 Rectangles 120 14�10 86 1,948
2 Slicing Rectangles 42 7�6 100 852
3 T-shapes 76 10�8 95 2,695
4 Simple shapes 345 23�18 84 11,236
5 Complex shapes 280 22�18 71 7,377

Table 1. Some results obtained by the Greedy
approach (LB:Lower Bound)

 1 1

 1

 1

 2 2 2 2

 2 2 2 2

 3 3

 3

 4

 4

 4 4

 5

 5 5

 5

 5 5

 5 5

 5

 5

 5 0

 0

 0

 0

 0

 0

 0

 0

 0 0 0 0

 0

 0

 0 0 0

 0 0

Physical Layout Chromosome Rep.

Figure 6. Chromosome (solution) Represen-
tation

2.3 Genetic Algorithms

Genetic Algorithms [8] [3] are heuristic search algo-
rithms based on the mechanics of natural selection. An
initial population is randomly generated. A pair of mem-
bers are randomly chosen from the population for repro-
duction. The parent chromosomes (solution) are mutated
and crossed over to generate the child’s chromosomes (so-
lution). All the child chromosomes undergo a natural se-
lection, called “survival of the fittest”. This whole process
continues until a satisfactory solution is found.

2.3.1 Solution Representation

Obviously, our matrix (2-D array) representation of object
arrays can be easily mapped into a 2-D chromosome. (see
Figure 6)

Each cell in the chromosome can take a value of 0 up to
the number of objects. A 0 means the corresponding pixel
is currently empty and a number x indicates that the pixel is
occupied by object x.

Standard GA operators will not work on this problem.
We modified the approaches proposed by Sakait and Hae
[16] both in the GA operators and compaction.

2.3.2 Mutation

The idea of mutation is to make an “accidental” change
in the chromosome. Hence, in the actual implementation
03 $17.00 (C) 2003 IEEE 4

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
 1 1

 1

 1

 2 2 2 2

 2 2 2 2

 4

 4

 4 4

 5

 5 5

 5

 5 5

 5 5

 5

 5

 5

 0

 0

 0

 0

 0

 0

 0 0 0 0

 0

 0

 0 0 0

 0 0

 1 1 0 2 2 2 2

 1

 1

 0

 0

 0

 3

 0 2 2 2 2 0

 0 0 0 0 4 4

 4

 4

 0 5 5 0 0

 0

 0

 0

 5 5 5 5

 5

 0 0

 5 5 5

 0 5 3

 3

 3

 3 3

 0 0

Figure 7. Mutation

of our GA, mutation is done by changing the position of
one object in the solution. First a randomly selected object
is removed from its current position. It will be randomly
placed in another position with a randomly chosen orienta-
tion without any overlapping with other objects. Figure 7
demonstrates the mutation process. The neighborhood so-
lution is obtained by changing the position and orientation
of object 3.

2.3.3 Crossover

We believe that good solutions have certain good genetic
characteristics. By crossing over two randomly selected
parents, the next generation will be able to inherit these
good characteristics. Or simply, the crossing over of good
solutions is more likely to generate even better solutions.

The implementation of a crossover operator is more
complicated than mutation. The general idea is to swap
parts of the parents to produce children. Two randomly
selected parents are overlaid to select the largest common
area that can be swapped. A reconciliation is done after the
swapping to ensure the validity of the solution. The process
of the crossover operator is shown in Figure 8. The max-
imum common area (MCA) is surrounded by thick lines.
After swapping the MCA, if an object appears twice in a
child, a copy of such an object is removed. If an object does
not appear in a child, a copy of the object will be randomly
added into the child.

2.3.4 Objective Function

To measure the quality of one solution during the GA pro-
cess, we defined the objective function as �� edges-no
+(1 � �)� wasted-area and � � 0:5. We believe that this
measurement is more accurate than the one used by Sakait
and Hae [16], which is the sum of area of minimum bound-
ing rectangle and the moment of inertia, in the sense that it
also takes the number of edges into consideration. Usually,
a highly packed set of objects have less number of edges
than the loosely packed ones. Whereas [16] utilizes objects
that do not deviate significantly from rectangles, our objects
are generalised to be arbitrary rectilinear shapes, thus we
have to take into account the number of edges in addition to
wasted area.

2

T
a
n
c
m
r
o

2

t
m
w
m

 0-7695-1874-5
 1 1 0 2 2 2 2

 1

 1

 0

 0 2 2 2 2 0

 0 0 0 0

 0 0

 0 0

 0 0

 1 1 0 2 2 2 2

 1

 1

 0

 0 2 2 2 2 0

 0 0 0 0

 0 0

 0 0

 0 0

 0 0

 0

 0

 0 0

 0

 0

 5 5

 5 5 5 5

 5 5 5 5

 5

 0

 0

 3

 5 5 0

 0

 0

 5 5 5 5

 5

 0 0

 5 5 5

 5 3

 3

 0

 0

 3

 3

 3

 0

Parent 1 Child 1

 0

 0 0 0 0

 3 3

 3

 0

 0

 0 0 0

 0

 0 0

 0 0

 2 2 2 2

 2 2 2 2 0

 0 0 0 0

 3 3

 3

 0

 0

 0 0 0

 0

 0 0

 0 0

 5

 2 2 2 2

 2 2 2 2

 1

 1

 1 0 0

 0

 0

 0 0

 0

 0

 5 5

 5 5 5 5

 5 5 5 5

 5

 1 0

 0

 5 5 0

 0

 0

 5 5 5 5

 5

 0 0

 5 5 5

 5

 0

 1 1

 1

 1

Parent 2 Child 2

Figure 8. Crossover

Figure 9. Result of Genetic Algorithm

.3.5 Experimental Result

able 2 shows the solutions generated by GA. GA takes up
large amount of time due to the genetic process. It may

ot work as well as the greedy approach for smaller test
ases but it clearly out-performs the greedy approach for
ore generalized irregular shapes. Figure 9 illustrates the

esult of test case 5, which contains complex general shaped
bjects.

.4 Tabu Search

Tabu Search [12] [10] is a local search heuristic that uses
he best neighborhood move that is not in the list of “tabu”
oves to move out of local optimum. The algorithm stops
hen a certain number of non-improving moves have been
ade. For more details, please refer to [9, 11].
/03 $17.00 (C) 2003 IEEE 5

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
Test Description LB Result Util% Time(s)
1 Rectangles 120 13�10 92 56,693
2 Slicing Rectangles 42 7�6 100 7,767
3 T-shapes 76 12�8 83 18,695
4 Simple shapes 345 25�15 92 31,708
5 Complex shapes 280 22�17 74 87,280

Table 2. Some results obtained by Genetic Al-
gorithms (LB:Lower Bound)

Figure 10. Result of Tabu Search

2.4.1 Iterative Steps

In our implementation, the neighboring solution is defined
to be any solution that can be obtained by changing the po-
sition of one object. For each iteration, every object with all
possible new positions and orientations are evaluated. The
best one is recorded and performed. The object involved
in this operation is placed on the Tabu List, which usually
has a length of seven elements in our implementation. The
process stops when there are more than five non-improving
moves.

2.4.2 Experimental Result

Table 3 shows the results generated by the TS algorithm.
The running time of TS changes from case to case due to
the non-improvement move termination mechanism. It out-
performs the greedy approach for more general cases. The
overall performance of TS is comparable to that of GA. As
a comparison to GA, Figure 10 illustrates the final configu-
ration of test case 5 generated by TS.
 0-7695-1874-5/
Test Description LB Result Util% Time(s)
1 Rectangles 120 13�10 92 10,233
2 Slicing Rectangles 42 7�6 100 387
3 T-shapes 76 11�9 77 9,499
4 Simple shapes 345 22�17 92 586
5 Complex shapes 280 22�18 71 8,944

Table 3. Some results obtained by Tabu
Search (LB:Lower Bound)

3 Boundary Representation and Heuristics

3.1 Introduction of the Boundary Representation

The rectilinear representation we introduced in the pre-
vious chapter is based on the discretization of irregular ob-
jects. There are two disadvantages of such approaches.
Firstly, for small objects, the discrete approximation will
not be accurate as there will be obvious changes in the ob-
ject shape. Secondly, for large objects, the discrete approx-
imation will be more accurate as the changes are negligible
to the size of the object. But the computational complex-
ity grows quadratically O(n2) with the size of the objects,
which seriously weakens the usability of such an approach.

The use of polygon boundary representation overcomes
the above-mentioned shortcomings. In fact, such an ap-
proach is also more accurate due to the use of real number
coordinates. However, the trade-off is that object manip-
ulation is more difficult. Table 4 contrasts these two rep-
resentation schemes. For example, to check whether two
objects are overlapped, in the rectilinear representation we
only need to check all the pixels. However, in the boundary
representation, the computation that is needed to perform
a polygon intersection checking involves checking the line
segment intersection. There are several cases that need to be
considered in line segment intersection checking. A func-
tion that handles line segment intersection with all cases ex-
ceeds a few hundred lines in code. And this is only the most
basic problem in the boundary representation system! Be-
cause of its complexity there has been no attempt to solve
irregular shaped packing.

3.2 The Representation and Operations

The boundary representation is straightforward as it sim-
ply stores the coordinates for the vertices of the polygon in
a vector in some order. Note that such representation has
the ability to represent both convex and concave polygons.
Thus in the following, a general polygon can either be con-
vex or concave.
03 $17.00 (C) 2003 IEEE 6

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
Operations Rectilinear Rep. Boundary Rep.
Move pixel by pixel compute final position

and move at one shot
Rotation 4 Orientations arbitrary angles

Computing Scan for occupied cells Triangulation and
area in the matrix sum up the areas

Checking for Check for overlapping Checking for polygon
overlapping of two integer matrix intersection

Table 4. Compare and Contrast for Two Rep-
resentation

h

0

h/2

T1

T2

Figure 11. Binary Search Dropping

3.3 A Binary Move Technique

The move of the object is much more complicated than
its rectilinear counterpart. Because the coordinates are real
numbers, repeated shifting using a constant distance is not
feasible as it is slow and inaccurate.

We proposed a binary search like method to move ob-
jects. For example, if object O is at height h, to drop it
downwards to a position as low as possible, given the bot-
tom is not necessarily flat, we apply the following proce-
dure:

Function Drop(H,L){
while(H-L>10e-5){

place O in height (H+L)/2;
check for overlapping;
if (there is overlapping)
return Drop(H,(H+L)/2);

else
return Drop((H+L)/2,L);

}
}

The function call starts with Drop(h; 0), where 0 is the
lowest point of the bottom which is definitely not feasible
(see Figure 11). Then the algorithm will try (T1) with the
middle point of this interval and branch accordingly. In
Figure 11, the middle point is feasible, the algorithm will
 0-7695-1874-5/03
h

0

h/2

T2

T1

Figure 12. A Trap During Binary Search Drop-
ping

then try (T2) with the lower half. Finally, if the distance be-
tween O and bottom is within 10�5 unit, we consider them
to “touch” each other. However, we found that this binary
search like technique does not work all the time. If there
happens to be an obstacle placed in the middle of the drop-
ping interval occurs, the algorithm will just simply ignore
the lower half of the interval (See Figure 12). To overcome
this problem, we allowed the algorithm to check both half
of the interval to perform a more extensive search. In the
code segment that follows, we use an additional parameter
R to control the number of tries. Another option to over-
come the above problem is to divide the interval into more
than two parts, for example using ternary search, etc. This
approach can be implemented in a similar manner as the
binary search based method.

Function Drop(H,L,R){
while(H-L>10e-5){
place O in height (H+L)/2;
check for overlapping;
if(R>0)
return min(Drop(H,(H+L)/2,R-1),

Drop((H+L)/2,L,R-1));
else{
if (there is overlapping)

return Drop(H,(H+L)/2,0);
else

return Drop((H+L)/2,L,0);
}

}
}

3.4 The Greedy Approach

Advanced heuristic methods, like GA and TS, require an
abstract solution representation to perform the search tech-
 $17.00 (C) 2003 IEEE 7

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
nique. However, it is not easy to find such abstractions un-
der the boundary representation. Hence, in this section, we
use a greedy based algorithm to solve the problem.

Greedy algorithms work in phases. In each phase, a de-
cision is made that appears to be good, without regard for
future consequences. Generally, this means that some local
optimum is chosen. This “take what you can get now” strat-
egy is the source of the name for this class of algorithms.
When the algorithm terminates, we hope that the local opti-
mum is equal to the global optimum. If this is the case, then
the algorithm is correct; otherwise, the algorithm has pro-
duced a sub-optimal solution. If the optimal answer is not
possible because of the NP-Completeness of the problem,
then simple greedy algorithms are used as a simple heuris-
tic to generate reasonable solutions.

3.4.1 The Algorithm

We have three ways to move to the local optimum, namely
shifting down-most, shifting left-most and rotation. The al-
gorithm works as follows:

sort the objects;
for each object (O){
while(a position change of object O){

shift O downwards as low as possible;
rotate O around each vertex;
shift O as left as possible;

}
}

The process will continue until shifting-down, shifting-
left or rotation is no longer possible. In other words, the
algorithm continues pushing objects downwards and left-
wards until the objects reach stable positions. The use of the
rotation operator in this process is to ensure that the highest
point of the object being pushed is kept as low as possible.
In this way, the objects will be compacted along the vertical
dimension.

Since the algorithm is greedy in nature, the order of the
objects being packed will essentially affect the packing re-
sult. We proposed three packing sequences and did experi-
ments for all of them.

1. Pack object with largest area first.

2. Pack object with smallest area first.

3. Pack objects in random order.

Figure 13, 14 and 15 list the packing results for these
three orders. It is obvious that packing the largest area first
will generate the highest utilization. The major reason is
that the empty spaces produced by the big objects are more
likely to be filled by the smaller objects later. However, the
empty spaces produced by smaller objects will not be used
as the objects being packed later become larger and larger.
 0-7695-1874-5/0
Figure 13. Largest area first. Utilization: 80%

Figure 14. Smallest area first. Utilization: 60%
3 $17.00 (C) 2003 IEEE 8

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
Figure 15. Packing in random order. Utiliza-
tion: 74%

3.4.2 Experimental Result and Analysis

We performed extensive experiments over synthetic test
cases to test our greedy packing approach with boundary
representation. Figure 16 and 17 are the packing configu-
rations for the mixture of convex and concave objects. It
is true that for some portions of the configuration, human
manipulation could improve the packing density. Note that
such operation as a program involves a huge amount of ar-
tificial intelligence.

4 Conclusions

We proposed several methods for the 2D packing of gen-
eral irregular shaped objects. This has not been well stud-
ied in the past because of its complexity. We started our
research by adopting the rectilinear representation. Repre-
senting objects by a matrix (2D array) enabled us to per-
form advanced heuristic methods. We first came up with
a Greedy algorithm by combining the objects. A Genetic
Algorithm with modified Mutation and Crossover opera-
tors and Tabu Search algorithms were proposed and then
tested for synthetic test cases with general shaped objects. It
turned out that such representation had two limitations. For
small objects, the discrete approximation error was large
and for big objects, it was computationally inefficient. Poly-
gon boundary representation was our second approach for
representing general irregular shaped objects. This is more
accurate, but is also more complicated. We designed the
move, rotation, area and overlapping check operators as ba-
 0-7695-1874-5/
Figure 16. Packing with convex container

Figure 17. Packing with concave container
03 $17.00 (C) 2003 IEEE 9

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003
sic elements for manipulating objects. It seemed very diffi-
cult to apply advanced heuristic methods. As a first attempt
on this problem, we designed a greedy method to solve the
problem. From the experimental results, when the objects to
be packed are more rectilinear-like, rectilinear representa-
tion is good. On the other hand, boundary representation is
more powerful when the objects are highly diverse in shape.

References

[1] M. Adamowica and A. Albano. Nesting two dimensional
shapes in rectangular modules. Computer Aided Design,
pages 27–33, 1976.

[2] A. Albano and G. Sapuppo. Optimal allocation of two-
dimensional irregular shapes using heuristic search method.
IEEE Transactions on Systems, Man, and Cybernetics,
pages 242–248, 1980.

[3] T. Back. Evolutionary algorithms in theory and practice :
evolution strategies, evolutionary programming, genetic al-
gorithms. 1996.

[4] H. P. Blazewicz, J. and R. Walkowiak. Using a tabu search
approach for solving the two-dimensional irregular cutting
problem. Annals of Operations Research, pages 313–327,
1993.

[5] D. Dori and M. Ben-Bassat. Efficient nesting of congruent
convex figures. Communications of the ACM, pages 228–
235, 1984.

[6] K. Dowsland and W. Dowsland. Heuristic approaches to
irregular cutting probelms. Working Paper EBMS, 1993.

[7] H. Freeman and R. Shapira. Determining the minimum area
encasing rectangle for an arbitrary closed curve. Communi-
cations of the ACM, pages 409–413, 1975.

[8] D. Ginat. Genetic algorithm : a function optimizer. Imprint
College Park, MD : University of Maryland, 1988.

[9] F. Glover. Tabu search. Technical report, University of Col-
orado, 1988.

[10] F. Glover. Tabu search - part I. ORSA Journal on Computing,
pages 190–206, 1989.

[11] F. Glover. Tabu search : a tutorial. Interface, pages 74–94,
1992.

[12] A. Hertz and D. D. Werra. The tabu search metaheuristics:
How we used it. Annals of Mathematics and Artificial Intel-
ligence, 1991.

[13] S. N. Keishi, S. and K. Yoji. The multi-bsg: stochastic ap-
proach to an optimal packing of convex-rectilinear blocks.
ICCAD98, pages 267–274, January 1998.

[14] Z. Maggie and W. Wayne. Arbitrary rectilinear packing
based on sequence pair. ICCAD98, pages 257–266, 1998.

[15] W. Qu and J. Sanders. A nesting algorithm for irregular
parts and factors affecting trim losses. International Journal
of Production Research, pages 381–397, 1987.

[16] J. Sakait and C. Hae. Two-dimensional packing problems
using genetic algorithms. Engineering with Computers,
pages 206–213, 1998.
 0-7695-1874-5/03 $17.00 (C) 2003 IEEE 10

	HICSS36 2003
	Return to Main Menu

